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Abstract

Two numerical models for solving thermal radiative transport in irregularly-shaped axisymmetric bodies
containing a homogeneous, anisotropically scattering medium are presented. The N-bounce method approximates
total exchange factors by summing direct and user-designated higher order terms representative of multiple

re¯ections/scattering. The source function approach is an intensity-based method relating the source function (gas
leaving intensity) to the surface leaving intensity. Both methods are based on the Discrete Exchange Factor method,
where exchange factors between arbitrarily-oriented di�erential surface and/or volume elements are calculated in a

straightforward approach. The present methods are capable of addressing blockage e�ects produced by inner and/or
outer blocking bodies. The results obtained via the current methods are found to be in good agreement with the
existing solutions to several axisymmetric benchmark problems. The solutions to several two-dimensional

axisymmetric problems are presented. 7 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

The numerous technological advancements

achieved within the past two decades are fueling

industrial e�orts to push the envelopes of product

yield and quality. Complex materials processes, such

as the Czochralski (CZ) crystal growth, vertical

Bridgmann crystal growth, and optical ®ber drawing

processes, are numerically simulated for purposes of

process optimization and promoting insight into ex-

traneous thermophysical issues. Radiative heat trans-

port plays a vital role in these material processes,
as well as other engineering processes, including
glass manufacturing, rocket-nozzle analysis, and

combustion chamber design. Radiative analyses of
these axisymmetric systems are, however, generally
simpli®ed or often neglected, due to the intrinsic

di�culties associated with making detailed radiation
calculations. A few of the inherent radiative com-
plexities encountered in these systems include con-
sideration of the arbitrary shape of the enclosure,

shadowing e�ects produced by inner/outer blocking
bodies, and anisotropically scattering media. Nunes
and Naraghi [1] have addressed these concerns for

isotropically scattering media by generalizing Mod-
est's [2] view factor scheme using the Discrete
Exchange Factor (DEF) [3] formulation. Thus, the

motivation of this work is to extend Nunes and
Naraghi's [1] DEF-based model for systematically
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computing radiative transfer in axisymmetric enclo-

sures to include the e�ects of anisotropic scattering.

Investigators have, in previous works, implemented

various numerical methods for solving the radiative

transfer equation (RTE) for speci®c axisymmetric geo-

metries. Kaminski [4] utilized the P1 di�erential ap-

proximation and Monte Carlo methods for solving

radiative transfer in a gray, truncated cone. Yin and

Jaluria [5] modeled the radiative exchange of heat

between an optical ®ber furnace and preform during

neck-down using the zonal method. In a recent work

by Kim and Baek [6], benchmark results are presented

for a nozzle-shaped cylindrical enclosure using several

techniques, including a hybrid method of a modi®ed

discrete ordinates method (MDOM) for body-®tted

axisymmetric geometries, a three-dimensional ®nite

volume method (FVM), and an axisymmetric FVM.

All these analyses, however, neglect the e�ects of volu-

metric scattering. In fact, a review of the existing lit-

erature indicates that radiative analyses of

axisymmetric media with anisotropic scattering is lim-

ited to circular cylindrical geometries. Stockham and

Love [7] employed the Monte Carlo method to investi-

gate the radiative transfer to the exterior base region

of a ®nite cylindrical dispersion of absorbing, emitting,

and anisotropically scattering particles. Azad and

Modest [8] reported heat ¯ux results for an in®nitely

long gray cylinder using an exact formulation derived

explicitly for linear anisotropic scattering. Additionally,

they presented modi®ed di�erential and exponential

kernel approximations for linear anistropically scatter-

ing media. Thynell [9] used the RTE, cast in an inte-

gral form of the Fredholm type, for absorbing,

emitting, and linear-anisotropically scattering media, to

compute the spectral hemispherical and hemispherical

plume emissivities of a one-dimensional cylinder. Cros-

Nomenclature

a degree of anisotropy in Eq. (24)
aj absorptance of node j
dsisj direct exchange factor between surface ring

elements i and j
dsisjk direct exchange factor between a point on

surface ring element i and element k on sur-

face ring element j
dsivj direct exchange factor between surface ring

element i and volume ring element j

dsivjk direct exchange factor between a point on
surface ring element i and element k on
volume ring element j

dvisj direct exchange factor between volume ring

element i and surface ring element j
dvisjk direct exchange factor between a point on

volume ring element i and element k on sur-

face ring element j
dvivj direct exchange factor between volume ring

elements i and j

dvivjk direct exchange factor between a point on
volume ring element i and element k on
volume ring element j

dzizj uni®ed direct exchange factor between ring
elements i and j

DZiZj uni®ed total exchange factor between ring
elements i and j

E emissive power
Isi surface leaving intensity from node i
Ivi, j

intensity leaving volume node i directed

towards node j
Kt extinction coe�cient
Nce number of circumferential elements

Nsre number of surface ring elements
Nvre number of volume ring elements
q 00 radiative heat ¯ux

q 000 radiative heat source
r position vector
r radial coordinate

ri, k, j re¯ectance of element k
T temperature
w numerical integration weight factor

z axial coordinate

Greek symbols
E emissivity

fi, fj function de®ned by Eq. (7)
Fi, k, j scattering phase function
y tilt angle of surface with respect to z-axis

c azimuth angle
r re¯ectivity
s Stefan±Boltzmann constant = 5.67051 �

10ÿ8 W/(m2 K4)
oo scattering albedo

Subscripts
i designates emitting ring element
j designates receiving ring element
k1, k2 designates re¯ecting/scattering element

max designates maximum
min designates minimum
s designates surface

v designates volume
w designates wall
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bie and Dougherty [10] presented an exact solution to
radiative transfer in a ®nite cylinder with anisotropic

scattering, with the resulting expressions for the source
function, heat ¯ux, and intensity given in integral

form. In an e�ort to decouple the transfer equation
from the energy equation, this formulation, however,

neglects the e�ects of emission. Thus, to the authors'
knowledge, a numerical model which incorporates geo-
metrical, as well as optical complexity, such as aniso-

tropic scattering, for ®nite axisymmetric systems, is
inexistant to date.
Two numerical models based on the N-bounce [11]

and source function [12] variations of the DEF
method, are applied to Nunes and Naraghi's [1]
exchange factor model in order to address the afore-

mentioned concerns. In the N-bounce method, total
exchange factors between emitting/receiving elements
are computed by summing direct radiative and N
higher order transfer terms, representing multiple

re¯ections/scattering or bounces among enclosing sur-
faces/media. The source function approach is based on
simultaneously solving two integral equations relating

the volumetric source function and surface leaving
intensity, using discrete exchange factors in place of
solid angle discretization. The source function

approach is extremely versatile and insensitive to the
type and degree of scattering in its solution procedure.
Several benchmark problems are solved, including

radiative transfer in a truncated cone, nozzle-shaped
cone and a one-dimensional cylinder, to verify the pre-
sented methods.

2. Mathematical formulation

2.1. N-bounce method

Consider the axisymmetric enclosure shown in

Fig. 1(a). The enclosure is comprised of arbitrarily-
shaped inner and outer surfaces. All surfaces are dif-
fuse and gray; the medium is homogeneous and aniso-

tropically scattering. The computation of radiative
transfer from position vector ri to rj is complicated by
the presence of directional-biased scattering and sha-

dowing/blockage e�ects, ensuing from the geometric
con®guration of the enclosure. The N-bounce method
asserts that the total exchange of radiant heat from
position vector ri to rj can be obtained by summing a

user-de®ned N number of bounce terms, representative
of the maximum number of scattering/re¯ections
which a radiative beam undergoes, before reaching rj:
The uni®ed total exchange factor expression [11] in dis-
cretized form for the zero-, one-, and two-bounce ap-
proximations can be expressed as:

DiZiZj � dzizj �1�
Fig. 1. (a) Two-dimensional view of an axisymmetric body

used in N-bounce formulation; (b) two-dimensional view of

an axisymmetric body used in source function formulation
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DZiZj � dzizjaj �
XNsre�Nvre

k1�1
dzizk1ri, k1, jwk1dzk1zj �2�

DZiZj � dzizjaj �
XNsre�Nvre

k1�1
dzizk1ri, k1, jwk1dzk1zj �

XNsre�Nvre

k1�1

�
XNsre�Nvre

k2�1
dzizk1 ri, k1, k2wk1dzk1zk2rk1, k2, jwk2dzk2zj

�3�

where Nsre denotes the total number of surface ring el-
ements; Nvre denotes the total number of volume ring
elements, and the term dzizj is the uni®ed direct

exchange factor between position nodes i and j. If
nodes i and j are located on any enclosure surface,
then dzizj is a surface-to-surface direct exchange factor,

given by dsisj: The remaining direct exchange factors,
dsivj, dvisj, and dvivj, are de®ned within dzizj in a simi-
lar way. The uni®ed total exchange factor expression,
dZiZj is de®ned in the same manner. The re¯ectance,

ri, k1, j, of di�erential element k1 is de®ned as the re¯ec-
tivity, r, for surface elements and the scattering
albedo-phase function product, o0Fi, k1, j, for the ani-

sotropically scattering medium. The absorptance, aj of
surface node j is the absorptivity of the surface, where,
for volume node j, the absorptance is 1ÿ o0: It is im-

portant to note that the absorptance of the last terms
of Eqs. (1)±(3) is equivalent to one, so as to satisfy the
energy conservation law. The term, wk denotes the nu-

merical integration weight factors for surface elements
�ws� and volume elements �wv). It should be noted that
the original N-bounce approach [11] is only applicable
to three-dimensional con®gurations. Since the geo-

metric con®guration of the enclosure is axisymmetric,
the direct exchange factors can be conveniently com-
puted between concentric di�erential ring elements

using the method outlined in [1]. The uni®ed direct
exchange factor expression, based on symmetry with
respect to the azimuthal angle, is given below.

dzz�ri, rj � �

�
� ÿ 2��bi�bj �K �1ÿbj �t r

bj
i r
�bi�1�
j cosbi �yi �cosbj

ÿ
yj
�
wj

4�1ÿbi �p

�
�ci, j

max

ci, j
min

ÿ
fi ÿ cos

ÿ
ci, j

��biÿfj ÿ cos
ÿ
ci, j

��bj eÿKtjriÿrjj

jri ÿ rjj�bi�bj�2�
� dci, j �4�

or, in discretized form:

dzizj �
� ÿ 2��bi�bj �K �1ÿbj �t r

bj
i r
�bi�1�
j cosbi �yi �cosbj

ÿ
yj
�

4�1ÿbi �p

�
XNce, j

k�1

ÿ
fi ÿ cos

ÿ
ci, jk

��biÿfj ÿ cos
ÿ
ci, jk

��bj eÿKt jriÿrjk j

jri ÿ rjk j�bi�bj�2�
wjk

�5�
where

jri ÿ rjj 2 � r 2i � r 2j ÿ 2rirj cos c� �zj ÿ zi � 2 �6�

fi �
ri
rj
� zj ÿ zi

rj
tan yi, fj �

rj
ri
� zi ÿ zj

ri
tan yj �7�

where, for di�erential ring element i, bi � 1 for a sur-
face element; bi � 0 for a volume element, and for ring
element j, bj � 1 for a surface element; bj � 0 for a

volume element. The azimuthal angles cmin and cmax

represent the limiting angles from which a reference
point (at c � 0� on an emitting ring element i can see
a receiving ring element j. The values of cmin and cmax

are governed by the orientation of surface elements
relative to the surface/volume ring elements to/from
which radiative energy is being transferred and the

presence of inner/outer blocking bodies (see [1]).
The main di�culty presented by integrating the uni-

®ed direct exchange factor expression into the one- or

two-bounce equations, given by Eqs. (2) and (3), is in
computing the phase function, F: This is primarily due
to the use of azimuthal symmetry in formulating the
uni®ed direct exchange factor equation. In an e�ort to

clarify these statements, consider the three ring el-

Fig. 2. Two-dimensional view of ring elements in r±c plane

depicting scattering at point b on ring element k1:
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ements shown in the r±c or x±y plane in Fig. 2. El-
ements i, k1, and j are emitting, re¯ecting/scattering,

and receiving ring elements. Point a is a reference
point (at ci, k1

� 0), situated on the x i-axis, which
emits radiation in the direction heading to point b on

ring element k1: With the radiative beam now at ring
element k1, point b becomes a reference point (at
ck1, j

� 0), situated on the xk1 -axis, which scatters the

radiative beam into the direction of point c, as well as
its symmetric counterpart, point d. Clearly, scattering
angles abc and abd are not equal, giving two di�erent

values for the phase function at point b. This disparity
can be easily resolved by using the average of the
phase function, all the while retaining the basis of azi-
muthal symmetry in the de®nition of the direct

exchange factor expression, i.e.:

�Fa, b, c � Fa, b, c � Fa, b, d

2
�8�

It is very important that the multiple bounce exchange
factors satisfy the conservation of energy equations,

namely:

XNsre

j�1
dsisjwsj �

XNvre

j�1
dsivjwvj � 1 �9�

XNsre

j�1
dvisjwsj �

XNvre

j�1
dvivjwvj � 1 �10�

Since the exchange factors are evaluated numerically,

normalization of the exchange factors is required. The
zero-bounce or direct exchange factors are normalized
by invoking an error minimization process based on a

least squares smoothing technique using Lagrangian
multiplers [13]. Each of the terms of the one-bounce
exchange factors are normalized, making it a two-step

normalization procedure. The ®rst term is normalized
just as a direct exchange factor would be. The second
term is normalized using the following equation in
place of Eqs. (9) and (10) as a constraint.

XNsre�Nvre

j�1

XNsre�Nvre

k1�1
dzizk1 ri, k1, jdzk1zjwk1wj

� 1ÿ
XNsre�Nvre

j�1
zizjwjaj �11�

where the left-hand term represents the sum of the
one-bounce terms from a point on ring element i to
the enclosure; the right-hand term gives the total

amount of energy emitted from a point on ring el-
ement i, which is scattered/re¯ected after direct trans-
mission to all the ring elements in the enclosure. The

two-bounce total exchange factors are normalized
using a similar procedure.

Once the total exchange factors for the zero-, one-,
or two-bounce approximations have been evaluated,
the radiative heat ¯ux at each surface/volume ring el-

ement can be computed from energy balance consider-
ations.

q 00si � Esi ÿ
XNsre

j�1
ws, jDSjSiEsj ÿ

XNvre

j�1
wv, jDVjSiEvj �12�

q 000vi
� Evi ÿ

XNsre

j�1
ws, jDSjViEsj ÿ

XNvre

j�1
wv, jDVjViEvj �13�

where Esj � EjsT 4
j and Evj � 4Kt�1ÿ o0�sT 4

j are
equations for the emissive power of surface/volume

ring elements.

2.2. Source function method

Consider an arbitrarily-shaped axisymmetric en-
closure which encompasses an absorbing, emitting, and
anisotropically scattering medium, as depicted in

Fig. 1(b). The equations of radiative transfer, based on
the source function approach, describing the radiative
transfer within the enclosure are, in discretized form,
given below [12].

Isi � Ei
Esi

p
� ri

XNs

j�1
wsj Isj dsisj � ri

XNv

j�1
wvj Ivj, i

dsivj �14�

Ivi, j
� Evi

4pKt

�
XNs

k�1
wsk Isko0Fk, i, jdvisk

�
XNv

k�1
wvk Ivk, i

o0Fk, i, jdvivk �15�

q 00si � Esi ÿ Eip
XNs

j�1
wsj Isj dsisj ÿ Eip

XNv

j�1
wvj Ivj, i

dsivj �16�

q 000vi
� Evi ÿ 4pKt�1ÿ o0 �

24XNs

j�1
wsj Isj dvisj

�
XNv

j�1
wvj Ivj, i

dvivj

35 �17�

where Isi is de®ned as the surface leaving intensity
from a di�use surface at node i; Ivi, j

is the source func-
tion, representing the intensity leaving volume node i
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directed towards node j; Esi and Evi are the emissive
powers of surface/volume node i, respectively.

The source function equations can be easily manipu-
lated to conform to problem types with di�erent
known quantities (e.g. surface temperature/gas heat

source or surface/volume temperatures known). These
equations are solved iteratively for the surface leaving
intensity and source function distributions, whereupon

the surface heat ¯ux, volume heat source or volume
temperature quantities are computed in a straightfor-
ward procedure. In axisymmetric systems, however,

these radiative quantities are invariant in the circum-
ferential direction. Thus, the source function equations
can be modi®ed based on the principles of axisym-
metry to give:

Isi � Ei
Esi

p
� ri

XNsre

j�1

XNce, j

k�1
ws

jk
Isj dsisjk

� ri
XNvre

j�1

XNce, j

k�1
wvkj

Iv
j, ik

dsivjk �18�

Ivi, jn
� Evi

4pKt

�
XNsre

k�1

XNce, k

m�1
wskm Isko0Fkm , i, jn dviskm

�
XNvre

k�1

XNce, k

m�1
wvkm Ivk, im

o0Fkm , i, jn dvivkm �19�

q 00si � Esi ÿ Eip
XNsre

j�1

XNce, j

k�1
ws

jk
Isj dsisjk

ÿ Eip
XNvre

j�1

XNce, j

k�1
wvkj

Iv
j, ik

dsivjk �20�

q 000vi
� Evi ÿ 4pKt�1ÿ o0 �

24XNsre

j�1

XNce, j

k�1
ws

jk
Isj dvisjk

�
XNvre

j�1

XNce, j

k�1
wv

jk
Iv

j, ik
dvivjk

35 �21�

where Nce, j denotes the number of circumferential el-

ements in ring element j; ws
jk

and wv
jk
denote the nu-

merical integration weight factor associated with
circumferential element k of surface/volume ring el-

ement j, respectively; dzizjk denotes the direct exchange
factor between a reference point (at c � 0� on surface/
volume ring element i and circumferential element k of

surface/volume ring element j; and Iv
i, jk

denotes the
source function, giving the intensity of radiation leav-
ing a reference point (at c � 0� on volume ring el-

ement i in the direction of circumferential element k of
surface/volume ring element j.

The direct exchange factor expressions found in Eqs.
(18)±(21) are taken from the integrand of the uni®ed
direct exchange factor equation (4). The formulation

of the axisymmetric source function equations is con-
tingent upon equating the number of subdivisions (or
circumferential elements) of two ring elements consti-

tuting a ring element pair (i.e. the number of subdiv-
isions in ring elements i and j are equivalent when
both ring elements are transferring radiation). This

allows the following condition to be valid:

Iv
jk , i
� Iv

j, ik
�22�

When implemented into code, the notation of the ex-
pression on the right side of Eq. (22) reduces computer
storage and substantially improves computational

time. Again, one must be careful when computing the
phase function during the solution prcoess, due to the
imposed azimuthal symmetry on the uni®ed direct

exchange factor expression and the anisotropic nature
of the scattering.

3. Results and discussion

The solutions to several benchmark problems are

given in order to validate the DEF-based formulations
presented here. The ®rst two benchmark problems,
however, deal exclusively with absorbing±emitting

Fig. 3. Comparison of dimensionless wall heat ¯ux distri-

bution for a truncated cone using the source function, Monte

Carlo, P1, and MDOM methods.
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media in non-circular cylindrical enclosures. These
cases are solved using the source function approach in

an e�ort to illustrate the accuracy and ¯exibility of the
DEF method in analyzing irregularly-shaped en-
closures. The remaining cases presented in this section

consider the e�ects of anisotropic scattering using the
N-bounce and source function methods. All numerical
simulations were performed on a 333 MHz Linux

workstation with computational times of approxi-
mately 1952 and 6138 s for the one-bounce and source
function methods, respectively, for a 10 � 10 � 10

mesh.
The ®rst benchmark problem considers a conical

enclosure containing a hot absorbing±emitting me-
dium, bounded by cold, black walls. The enclosure is of

unit height, with radius/height ratios of r1=h � 0:0833
at z � 0 and r2=h � 0:5833 at z � 1: Fig. 3 presents the
dimensionless wall heat ¯ux distributions along the

side-wall of the enclosure for Ka � 0:1035, 0.207 and
1:035 mÿ1 using the following solution techniques: P1
method [4], Monte Carlo method [4], MDOM [6], and

source function method. The results obtained using the
current method are in good agreement with the
MDOM and Monte Carlo results for all values of the

absorption coe�cient. The P1 results, however, deviate
from the results of the remaining methods at the
bounding top/bottom surfaces for all optical con-
ditions.

Next, the nozzle-shaped axisymmetric enclosure in
the work of Kim and Baek [6] is examined. This enclo-

sure, with an axial length, zc, of 4 m, contains a hot,
isothermal, absorbing±emitting medium with three

di�erent absorption coe�cients, namely Ka � 0:1, 1.0
and 5:0 mÿ1. The walls are, as in the previous
problem, cold and black. The curved shape of the wall

is generated from the following sinusoidal function:

r

zc
� 1

4

�
1� sin

�
pz
2zc

��
�23�

The dimensionless wall heat ¯ux distributions obtained
using the current method, the axisymmetric FVM, 3D-

FVM, and MDOM, all from Kim and Baek [6], are
shown in Fig. 4. These results are found to be in excel-
lent agreement with each other for all absorption coef-

®cients examined. Interestingly, the heat ¯ux at the
lower portion of the curved wall is approximately 10±
15% higher than the heat ¯ux near the top bounding

surface. This can be attributed to the orientation of
the ring elements on the wall at these locations relative
to the cold, bounding top/bottom surfaces.

The problems examined up to this point consider
non-scattering media only. The N-bounce and source
function formulations can be implemented to solve
problems with anisotropically scattering media. The ac-

curacy of the N-bounce method, however, is user-
designated and exhibits limited applicability. The term,
N is practically limited to a value of 1 and is only

good for low-to-moderate scattering, due to the non-
linear increase in computational expense with increas-
ing N. For cases where scattering is high, the source

function approach produces results equivalent to an in-
®nite bounce method at a signi®cantly lower compu-

Fig. 5. Comparison of dimensionless wall heat ¯ux distri-

bution for a linear-anisotropically scattering cylindrical en-

closure for o0 � 0:1, 0.3, 0.5 and 0.7.

Fig. 4. Comparison of dimensionless wall heat ¯ux distri-

bution for a nozzle-shaped enclosure using the source func-

tion, axisymmetric FVM, 3D-FVM, and MDOM methods.
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tational expense than that of the two-bounce method.
To that end, consider a circular cylindrical enclosure

of unit height and diameter encompassing a linear-
anisotropically scattering medium. All surfaces are
black. The phase function for this type of scattering

can be expressed as:

F�Y� � 1� a cos�Y� �24�
where Y is the scattering angle. The optical thickness
of the medium, based on the diameter of the enclosure,
is unity. The top of the enclosure (at z � 1� is cold; the
bottom surface (at z � 0� is hot; the temperature of the
wall and medium varies linearly between cold/hot tem-
peratures. Fig. 5 gives a comparison of the wall heat

¯ux distribution obtained using the source function
and one-bounce methods for several selected values of
scattering albedo. The results demonstrate that for low

values of scattering albedo �o0R0:3), the one-bounce
and source function solutions are in good agreement,
with a relative average percent error at each axial

nodal point of approximately 0.1 and 1.3% for o0 �
0:1 and 0.3, respectively. As the scattering albedo
increases further, the e�ects of the degree of ani-
sotropy, namely, the value of a in Eq. (24), becomes

more pronounced. Moreover, the one-bounce solution
overpredicts the heat ¯ux everywhere, yielding a rela-
tive average percent error of approximately 6.6% for

o0 � 0:5 and 24.7% for o0 � 0:7: The relative average
error for these cases is computed by evaluating the
sum of the relative error, j�q 001B ÿ q 00SF �=q 00SFj, for all

nodes on the cylinder wall and dividing by Nz, the
number of axial nodal points on the wall.

The radial distribution of dimensionless volume heat
¯ux along z=h � 0:5 for several values of scattering
albedo is given in Fig. 6. The ®gure shows, as in the

previous case, the increasing disparity between the
source function and one-bounce solutions for increas-
ing scattering albedo. The approximate relative average

percent errors for o0 � 0:1, 0.3, 0.5 and 0.7 are 0.6%,
3.2%, 7.5% and 13.4%, respectively. These errors are,
for the most part, greater than those reported for the

surface heat ¯ux results, with the exception of the
o0 � 0:7 case, where volumetric emission/absorption is
now at a relatively low level.
Several cases of the aforementioned problem are ad-

ditionally performed using 6� 6� 6, 8� 8� 8, 12� 12
� 12 and 14 � 14 � 14 meshes to ensure grid-indepen-
dence of the presented solutions. Fig. 7 gives a com-

parison of the dimensionless radiative wall ¯ux
obtained using the source function and one-bounce
approaches for the o0 � 0:5, a � 1 case. A comparison

of total wall heat rate errors and computational times
for the indicated cases is provided in Table 1. The 10
� 10 � 10 mesh yields acceptable results for both one-

bounce and source function methods, yielding a 6.5%
and 1.1% error for the entire wall heat rate, respect-
ively. The 12 � 12 � 12 mesh would give better wall
heat rate results for the one-bounce method (4.3%),

but would require more computational e�ort and give
results less accurate than those supplied by the 10� 10
� 10 source function approach.

Fig. 7. Comparison of dimensionless wall heat ¯ux distri-

bution for a linear-anisotropically scattering cylindrical en-

closure �o0 � 0:5 and a � 1� for varying grid sizes.

Fig. 6. Comparison of dimensionless volume heat ¯ux distri-

bution for a linear-anisotropically scattering cylindrical en-

closure at z=h � 0:5 for o0 � 0:1, 0.3, 0.5 and 0.7.
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Next, consideration is given to axisymmetric en-
closures with anisotropically scattering media. In the
work of Azad and Modest [8], radiative transfer within
an in®nitely-long, black circular cylinder containing a

linear anisotropically scattering medium is solved. The
volume±surface temperature ratio is speci®ed as 5:1;
the scattering albedo is 0.5. This cylindrical system is

modeled as a cylinder with a height±radius ratio of 5:1
using a 10 � 13 � 7 �Nr �Nz �Nc� mesh, with top/
bottom black enclosing surfaces prescribed at the med-

ium temperature. Fig. 8 gives the dimensionless radial
volumetric heat ¯ux for varying degrees of anisotropy
(value of a in Eq. (24)) and values of optical thickness
(based on the radius of the cylindrical enclosure). To

avoid crowding the graph, only the source function
solution is depicted. The results display good agree-
ment between both methods for all cases shown. Due

to the low amount of absorbing/scattering present in
the t0 � 0:2 case, the radial heat ¯ux is essential in-
variant to the type of anisotropic scatter.

To this point, the path taken by a radiative beam
within any of the aformentioned enclosures is com-
pletely unobstructed by the shape of the enclosure.
There are, however, many cases of practical import-

ance where the geometry of the enclosure produces
shadowing (blockage) e�ects. For example, radiative
analyses of high-pressure rocket nozzles are often very

di�cult to perform due to the complexities introduced
by shadowing at the throat. Since there are no bench-
mark solutions for problems of this type, the solution

of a rocket-nozzle problem is included to aid in bench-
marking other axisymmetric formulations. Consider
the rocket nozzle mesh layout (5� 32) shown in Fig. 9.
The radial/axial coordinates of the nozzle wall and sur-

face/gas element temperatures are given in Table 2.
The nozzle wall is gray, with an emissivity of 0.8; the
top of the combustion chamber, perpendicular to the

axis of the rocket nozzle, is black and at the tempera-
ture of the adjacent gas; the exiting cross-section has
an emissivity of 0.8 and temperature equal to that of

the neighboring gas. Since the objective of the current
paper is to present a new model, radiative properties
of the combustion products are appropriately de®ned.

Therefore, the soot/carbon particles formed from com-

Table 1

Comparison of total wall heat rate error and computation time on 333 MHz Linux workstation for a circular cylindrical enclosure

Mesh size SF error (%) 1B error (%) SF time (s) 10B time (s)

6� 6� 6 5.8 18.1 151 44

8� 8� 8 2.6 11.6 1278 394

10� 10� 10 1.1 6.5 6138 1952

12� 12� 12 0.4 4.3 27,126 8718

14� 14� 14 0.0 3.0 90,732 29,708

Fig. 8. Comparison of dimensionless radial heat ¯ux distri-

bution for a one-dimensional, linear-anisotropically scattering

cylindrical enclosure using an exact formulation [8] and the

source function method. Fig. 9. Mesh layout of rocket engine.
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bustion are assumed to have a particle diameter of 30
mm. The extinction and scattering coe�cients for car-

bon particles of this size are obtained by using avail-
able spectral scattering/extinction e�ciency data [14].
These coe�cients are obtained by implementing the

average integrated scattering/extinction e�ciencies into
the following equations:

Kt � Zt

pD 2

4
N �25�

Ks � Zs

pD 2

4
N �26�

where Zt and Zs are the extinction and scattering ef-
®ciencies; D is the diameter of the carbon particle; and
N is the carbon particle concentration. The values of

N chosen for purposes of investigation include N =
5.0 � 108, 5.0 � 109, and 5.0 � 1010 (par/m3). The d-
Eddington approximation is used to model the aniso-

tropic scattering present within the enclosure.

F��Y� � 1� 3g cos�Y� �27�
Since the d-Eddingtion approximation removes the for-

ward peak scattering from the scattering phase func-
tion and includes it in the extinction coe�cient, the
extinction and scattering coe�cients are appropriately

modi®ed using the following equations:

K �t � Kt�1ÿ fo0 � �28�

o�0 �
o0�1ÿ f�
1ÿ fo0

�29�

where the values of f and g in the equations above are
taken as f � 0:111 and g � 0:215 for moderate aniso-

tropic scattering. Fig. 10 gives the dimensionless wall
heat ¯ux distribution along the rocket nozzle for the
indicated particle concentrations using the isotropic

DEF [1] source function and one-bounce methods. All
the examined cases display similar trends for the wall
¯ux. The sharp increase/decrease of heat ¯ux between

z � ÿ0:0381 and z � 0 is due to enhanced/diminished
visibility of the hot combustion products/surfaces in
the combustor portion of the rocket nozzle. The results
obtained for all three methods for the N � 5:0� 108

par/m3 case are virtually identical due to the low
amount of extinction present with the enclosure. The
optical thickness, based on combustor radius, for this

case is 0.146. For the N � 5:0� 109 par/m3 case, the

Fig. 10. Comparison of dimensionless wall heat ¯ux pro®le in

a rocket engine for particle concentrations of N � 5� 108, 5

� 109, and 5� 1010 par/m3.

Table 2

Nozzle radii and surface/gas temperatures along axial axis

z (cm) r (cm) Ts (K) Tv (K)

ÿ16.26 8.321 750.7 3834.8

ÿ12.70 8.321 701.9 3834.8

ÿ10.16 8.321 653.1 3834.8

ÿ7.62 8.321 613.3 3834.8

ÿ5.59 8.321 578.4 3834.8

ÿ3.81 8.321 447.8 3834.8

ÿ2.92 8.321 420.8 3834.8

ÿ2.41 7.432 508.0 3830.7

ÿ2.03 6.543 544.7 3821.6

ÿ1.52 5.680 650.0 3797.5

ÿ0.76 5.121 711.4 3746.4

ÿ0.38 4.969 729.7 3704.8

ÿ0.13 4.923 730.8 3665.8

0.00 4.918 686.1 3646.9

0.13 4.943 628.8 3605.6

0.25 5.019 521.2 3554.2

0.38 5.121 483.3 3502.1

0.64 5.426 461.6 3402.7

1.02 5.883 456.6 3295.4

1.52 6.289 454.2 3211.1

2.03 7.051 433.1 3098.4

3.05 8.220 384.1 2960.2

4.06 9.337 516.1 2851.7

5.08 10.404 502.4 2761.0

6.35 11.700 425.7 2664.2

8.38 13.579 510.8 2542.1

10.16 15.433 423.8 2433.1

12.70 17.542 439.4 2320.2

15.24 19.472 375.8 2228.4

18.29 21.402 333.4 2144.2

23.37 24.069 282.8 2042.3

27.94 25.847 238.4 1981.4
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source function and isotropic DEF solutions are rela-
tively close, whereas the one-bounce solution is notably

higher. The di�erence between the source function and
isotropic DEF solutions becomes more pronounced in
the last case, where the wall ¯ux in the combustor

region, computed by the source function method, is
notably larger. Once again, the one-bounce method
slightly overpredicts the heat ¯ux along the combustor

walls, due mainly to the relatively large scattering
albedo of the medium �o0 � 0:537).

4. Concluding remarks

The formulations for the source function and N-

bounce variations of the DEF method are proposed
for solving radiative transfer within irregularly-shaped
axisymmetric enclosures containing an anisotropically
scattering medium. The source function approach

relates the surface/gas leaving intensities with the sur-
face/volume emissive power and volumetric heat
source. The method is iterative, versatile, and capable

of handling all conditions of scattering. The N-bounce
method is a multiple bounce method, where N, the
maximum number of bounces a radiative beam makes

before becoming completely absorbed, is user-de®ned.
For a given mesh, the one-bounce solution requires
substantially less computational time than the source
function. The one-bounce method is, however, practi-

cally limited to problems with low-to-moderate scatter-
ing. Several benchmark problems are solved in order
to validate the models, including radiative transfer

within a truncated cone, nozzle-shaped enclosure, and
in®nitely-long cylinder. The results are found to be in
excellent agreement with those in the literature. In ad-

dition, the solution to a rocket-nozzle problem with
anisotropic scattering is presented to add to the bench-
mark literature.
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